Строение клеточной мембраны: 5 фактов из биологии

Что такое клеточная мембрана: все гениальное просто

Клеточная мембрана – это липопротеиновая оболочка, главная задача которой отделять клетки друг от друга и от окружающей среды. Но на этом ее функции не ограничивается и одно из дополнительных ее заданий – обеспечивать взаимодействие между клетками и окружающим миром.

История познания клеточной мембраны началась еще в 1925 году, когда немецкие ученые провели сложный эксперимент и преподнесли миру открытие – билипидный слой клеточной мембраны. Мембрана – это активная и деятельная часть клетки, на которую возложен довольно немалый круг обязанностей.

История изучения мембраны клетки:

  • В 1935 году ученые пришли к заключению, что в клеточных мембранах присутствуют белки, которые и обеспечивают им высокое поверхностное натяжение;
  • На микрофотоснимках в 1950 году удалось отчетливо запечатлеть эти самые два слоя клеточной мембраны, состоящие из липидных и белковых головок, с прозрачным пространством посередине;
  • Некоторое время ходила теория о трехслойном строении мембраны клетки, которую в 60-е годы выдвинул американский микробиолог, что, идущая вперед наука, вскоре опровергла;
  • Уже в 70-е годы ученые установили неоднородную и несимметричную структуру мембраны и то, что ее белки имеют разное и строение, и предназначение, а мембраны животных клеток снаружи имеют слой гликопротеинов.

Хотя мембрана и переводится как просто «пленка», строение имеет сложнейшее. Два слоя, из которых она состоит, между собой соединяются определенным образом, еще и при этом их разные стороны имеют разные свойства.

Модель жидкой мозаики также описывает, как питательные вещества транспортируются в клетку и из нее.

Транспорт питательных веществ и отходов может быть пассивным (то есть не требует энергии ) или активным (то есть требуется энергия) для перемещения молекул через клеточную мембрану. Пассивный перенос может происходить посредством диффузии , когда молекулы текут из области высокой концентрации в область низкой концентрации (вниз по градиенту концентрации). Если молекулы диффундируют через полупроницаемую мембрану, этот процесс называется осмосом.. Однако в клетках тип вспомогательного пассивного транспорта, называемый облегченной диффузией, работает из-за транспортных белков, которые создают межмембранные порталы для определенных типов молекул и ионов или прикрепляются к определенной молекуле на одной стороне мембраны, переносят ее в другую сторону и отпустите. Напротив, активный транспорт питается коферментом, называемым аденозинтрифосфатом (АТФ), который доставляет химическую энергию, захваченную при расщеплении пищи, в другие части клетки, чтобы перемещать молекулы вверх по градиенту концентрации. Помимо прочего, активный транспорт позволяет клетке удалять ненужные ионы , такие как натрий (Na +) из клетки, даже если концентрация ионов натрия вне клетки может быть выше, чем концентрация внутри.

Функции

  • Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембрану обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.При пассивном транспорте вещества пересекают липидный бислой без затрат энергии так как происходит перенос веществ из области высокой концентрации в область низкой, то есть против градиента концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.Активный транспорт требует затрат энергии, так как происходит перенос веществ из области низкой концентрации в область высокой, то есть по градиенту концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивает из неё ионы натрия (Na+).
  • Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.

Ультраструктура хлоропласта: 1. наружная мембрана 2. межмембранное пространство 3. внутренняя мембрана (1+2+3: оболочка) 4. строма (жидкость) 5. тилакоид с просветом (люменом) внутри 6. мембрана тилакоида 7. грана (стопка тилакоидов) 8. тилакоид (ламела) 9. зерно крахмала 10. рибосома 11. пластидная ДНК 12. пластоглобула (капля жира)

Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
Ферментативная — мембранные белки нередко являются ферментами

Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
Осуществление генерации и проведения биопотенциалов.С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн»

Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Основные свойства плазматической мембраны

Липидный бислой препятствует проникновению воды. Липиды – гидрофобные соединения, представленные в клетке фосфолипидами. Фосфатная группа обращена наружу и состоит из двух слоев: наружного, направленного во внеклеточную среду, и внутреннего, отграничивающего внутриклеточное содержимое.

Водорастворимые участки носят название гидрофильных головок. Участки с жирной кислотой направлены внутрь клетки, в виде гидрофобных хвостов. Гидрофобная часть взаимодействует с соседними липидами, что обеспечивает прикрепление их друг к другу. Двойной слой обладает избирательной проницаемостью на разных участках.

Так, в середине мембрана непроницаема для глюкозы и мочевины, здесь свободно проходят гидрофобные вещества: диоксид углерода, кислород, алкоголь

Важное значение имеет холестерол, содержание последнего определяет вязкость плазмолеммы

Основные сведения

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных, бактериальных и грибных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7—8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погружённые одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

Функции наружной мембраны клетки

Характеристики функций кратко перечислены в таблице:

Функция мембраны Описание
Барьерная роль Плазмолемма выполняет защитную функцию, предохраняя содержимое клетки от воздействия чужеродных агентов. Благодаря особой организации белков, липидов, углеводов, обеспечивается полупроницаемость плазмолеммы.
Рецепторная функция Через клеточную мембрану происходит активация биологически активных веществ в процессе связывания с рецепторами. Так, иммунные реакции опосредуются через распознавание чужеродных агентов рецепторным аппаратом клеток, локализованным на клеточной мембране.
Транспортная функция Наличие пор в плазмолемме позволяет регулировать поступление веществ внутрь клетки. Процесс переноса протекает пассивно (без затрат энергии) для соединений с низкой молекулярной массой. Активный перенос связан с затратами энергии, высвобождающейся при расщеплении аденозинтрифосфота (АТФ). Данный способ имеет место для переноса органических соединений.
Участие в процессах пищеварения На клеточной мембране происходит осаждение веществ (сорбция). Рецепторы связываются субстратом, перемещая его внутрь клетки. Образуется пузырек, свободно лежащий внутри клетки. Сливаясь, такие пузырьки формируют лизосомы с гидролитическими ферментами.
Ферментативная функция Энзимы, необходимые составляющие внутриклеточного пищеварения. Реакции, требующие участия катализаторов, протекают с участием ферментов.

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Строение микротрубочки

Функции

Одномембранные органоиды имеют общие четко обозначенные функции. Среди них:

  1. Защита клетки от неблагоприятных условий.
  2. Обеспечение транспорта веществ внутрь клетки.
  3. Фотосинтез (у растительных видов).

Каждый вид одномембранных органоид несет свою функцию:

  1. Ферменты лизосом предназначены для усвоения органических веществ, разрушения отживших органелл и клеток, которые выполнили свою функцию.
  2. Комплекс Гольджи накапливает вещества, которые образует мембрана эндоплазматической системы. Здесь происходит заключение образовавшихся веществ в пузырьки и распределение их по цитоплазме клетки. В дальнейшем они выводятся наружу. В комплексе Гольджи также происходит формирование лизосом.
  3. Вакуоли чаще встречаются в клетках растений и грибов. В то же время не исключены и животные протисты, содержащие эти органоиды. На вакуолях лежит обязанность хранить питательные вещества, производить их интоксикацию и, по обезвреживании, выводить отходы наружу.
  4. На эндоплазматическую сеть природа возложила функцию синтеза липидов. В организме животных ЭПС ярче представлена в ткани эпителия кишечника, а также тех органов, которые синтезируют гормоны. В ЭПС также синтезируются некоторые углеводы.

Функции

Какие функции выполняет клеточная мембрана:

  • барьерную – отделяет содержимое клетки от внешней среды;
  • транспортную – регулирует обмен веществ;
  • ферментативную – осуществляет ферментативные реакции;
  • рецепторную – распознаёт внешние стимулы.

контактную – способствуют соединению клеток друг с другом

Наиболее важной функцией является транспорт веществ при метаболизме. В клетку из внешней среды постоянно попадают жидкие и твёрдые вещества

Наружу выходят продукты обмена. Все вещества проходят через клеточную мембрану. Транспорт происходит несколькими путями, которые описаны в таблице.

Вид

Вещества

Процесс

Диффузия

Газы, жирорастворимые молекулы

Незаряженные молекулы свободно или с помощью специального белкового канала проходят сквозь липидный слой без затраты энергии

Осмос

Растворы

Односторонняя диффузия в сторону большей концентрации растворённого вещества

Эндоцитоз

Твёрдые и жидкие вещества внешней среды

Перенос жидкостей называется пиноцитозом, твёрдых веществ – фагоцитозом. Проникают с помощью вытягивания мембраны внутрь до образования пузырька

Экзоцитоз

Твёрдые и жидкие вещества внутренней среды

Обратный эндоцитозу процесс. Пузырьки с веществами продвигаются цитоплазмой к мембране и сливаются с ней, выпуская наружу содержимое

Рис. 3. Эндоцитоз и экзоцитоз.

Активный транспорт молекул веществ (натрий-калиевый насос) осуществляется с помощью белковых структур, встроенных в мембрану, и требует затраты энергии в виде АТФ.

Что мы узнали?

Рассмотрели основные функции мембраны и способы транспортировки веществ в клетку и обратно. Мембрана – липопротеиновая структура, состоящая из трёх слоёв. Отсутствие прочных связей между липидами обеспечивает пластичность мембраны и позволяет осуществлять транспорт веществ. Плазмалемма придаёт клетке форму, защищает её от внешнего воздействия, осуществляет взаимосвязь с окружающей средой.

  1. Вопрос 1 из 5

Начать тест(новая вкладка)

Общий план строения эпителиальных тканей на примере эпителия поверхностностного типа.

Имеется пять основных особенностей эпителиев:

  1. Эпителии представляют собой пласты (реже тяжи) клеток — эпителиоцитов. Между ними почти нет межклеточного вещества, и клетки тесно связаны друг с другом с помощью различных контактов.
  2. Эпителии располагаются на базальных мембранах, отделяющих эпителиоциты от подлежащей соединительной ткани.
  3. Эпителий обладает полярностью. Два отдела клеток — базальный (лежащий в основании) и апикальный (верхушечный), — имеют разное строение.
  4. Эпителий не содержит кровеносных сосудов. Питание эпителиоцитов осуществляется диффузно через базальную мембрану со стороны подлежащей соединительной ткани.
  5. Эпителиям присуща высокая способность к регенерации. Восстановление эпителия происходит вследствие митотического деления и дифференцировки стволовых клеток.

Пластиды

Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.

Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.

Строение хлоропласта

Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.

Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.

Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.

Строение лейкопласта

Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.

Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.

Строение хромопласта

Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.

Свойства биологических мембран

1.
Способность к самосборке
после
разрушающих воздействий. Это свойство
определяется физико-химическими
особенностями фосфолипидных молекул,
которые в водном растворе собираются
вместе так, что гидрофильные концы
молекул разворачиваются наружу, а
гидрофобные — внутрь. В уже готовые
фосфолипидные слои могут встраиваться
белки

Способность к самосборке имеет
важное значение на клеточном уровне

2. Полупроницаемость
(избирательность в пропускании ионов
и молекул). Обеспечивает поддержание
постоянства ионного и молекулярного
состава в клетке.

3. Текучесть
мембран
.
Мембраны не являются жесткими структурами,
они постоянно флюктуируют за счет
вращательных и колебательных движений
молекул липидов и белков. Это обеспечивает
большую скорость протекания ферментативных
и других химических процессов в мембранах.

4. Фрагменты
мембран не имеют свободных концов
,
так как замыкаются в пузырьки.

Состав клеточной мембраны: ее строение и уникальность

Самая важная клеточная составляющая мембран – белки. Состав этих белков, а также их расположение и назначение очень разнообразны. Общим является лишь то, что вокруг них всегда располагаются аннулярные липиды – устойчивые и четко структурированные особые жиры. Липиды являются своеобразными «телохранителями» для белков и создают условия и возможности для их работы.

При увеличении клеточной мембраны с помощью микроскопа, можно заметить слой из липидов, по виду напоминающие шарики, среди которых находятся большие, разнообразной формы, белковые клетки. Такие же мембраны находятся и внутри клетки – они делят ее на отсеки, как на комнаты, в которых располагаются органоиды.

В мембране находятся липиды разных классов:

  • Фосфолипиды;
  • Гликолипиды;
  • Холестерол.

Мембрана являет из себя очень важную функциональную составляющую клетки, ее значение сравнимо с любым другим органоидом (ядра, митохондрии и других). А благодаря своему строению она имеет, без преувеличения, уникальные свойства.

Строение и функции базальной мембраны

Базальные мембраны образуются в результате деятельности как клеток эпителия, так и клеток подлежащей соединительной ткани. Базальная мембрана имеет толщину около 1 мкм и состоит из двух пластинок: светлой (lamina lucida) и темной (lamina densa). Светлая пластинка включает аморфное вещество, относительно бедное белками, но богатое ионами кальция.
Темная пластинка имеет богатый белками аморфный матрикс, в который впаяны фибриллярные структуры (такие как коллаген IV типа), обеспечивающие механическую прочность мембраны.
Гликопротеины базальной мембраны — фибронектин и ламинин — выполняют роль адгезивного субстрата, к которому прикрепляются эпителиоциты.
Ионы кальция при этом обеспечивают связь между адгезивными гликопротеинами базальной мембраны и полудесмосомами эпителиоцитов.

Кроме того, гликопротеины базальных мембран индуцируют пролиферацию и дифференцировку эпителиоцитов при регенерации эпителия.

Наиболее прочно клетки эпителия связаны с базальной мембраной в области полудесмосом. Здесь от плазмолеммы эпителиоцитов через светлую пластинку к темной пластинке базальной мембраны проходят «якорные» филаменты. В этой же области, но со стороны подлежащей соединительной ткани в темную пластинку базальной мембраны вплетаются пучки «заякоривающих» фибрилл коллагена VII типа, обеспечивающих прочное прикрепление эпителиального пласта к подлежащей ткани.

Функции базальной мембраны:

  1. механическая (закрепление эпителиоцитов),
  2. трофическая и барьерная (избирательный транспорт веществ),
  3. морфогенетическая (обеспечение процессов регенерации и ограничение возможности инвазивного роста эпителия).

викторина

1. Что НЕ является компонентом клеточной мембраны?A. ФосфолипидыB. стериныC. БелкиD. Нуклеиновые кислоты

Ответ на вопрос № 1

D верно. Нуклеиновые кислоты, такие как ДНК и РНК, не являются частью клеточной мембраны. Они расположены внутри клетки и окружены ядром в эукариотических клетках. Фосфолипиды, стеролы и белки все находятся в клеточной мембране, и ассортимент этих молекул делает ее похожей на мозаику, отсюда и термин «модель жидкой мозаики».

2. Какая функция клеточной мембраны?A. Чтобы контролировать, какие типы молекул входят и выходят из клеткиB. Для контроля количества определенных молекул, которые входят и выходят из клеткиC. Получать сигнальные молекулыD. Все вышеперечисленное

Ответ на вопрос № 2

D верно. Клеточная мембрана выполняет все эти функции и, тем самым, помогает регулировать внутреннюю среду клетки и позволяет клетке нормально функционировать.

3. Какая часть молекулы фосфолипида является гидрофильной?A. Руководитель фосфатной группыB. Хвосты жирных кислотC. Оба а и БD. Ни А, ни Б

Ответ на вопрос № 3

верно. Головки фосфатных групп молекул фосфолипидов являются гидрофильными («любящими воду»). При попадании в раствор, содержащий воду, фосфолипиды естественным образом образуют двойной слой с головками снаружи и хвостами гидрофобной жирной кислоты внутри.

Что такое клеточная мембрана

Если провести аналогию с куриным яйцом (разбив скорлупу, аккуратно отделить от нее тонкую полупрозрачную пленочку), то визуально можно представить, что скорлупа — это плотная клеточная оболочка, а пленка — мембрана. Эта картинка очень наглядно позволяет увидеть, каким образом под клеточной стенкой, состоящей из целлюлозы, располагается плазмалемма. Конечно, это представление будет условным, но, действительно, мембрана в переводе с латинского языка означает кожа. Хотя этот термин достаточно давний, он точно передает сущность мембранной структуры .

Цитолемма (еще одно ее название) животной клетки плотной оболочкой не защищена, однако имеет особый слой, состоящий из белков и жиров, соединенных с сахарами (гликопротеинов и гликолипидов). Называют его гликокаликс, и роль, которую он несет (рецепторная, сигнальная), очень важна для жизнедеятельности.

Строение

Строение структуры уникально, и именно за счет него функции клеточной мембраны выполняются точно и избирательно.

В структуру плазмалеммы входят молекулы:

  • фосфолипидов,
  • гликолипидов,
  • холестерола,
  • белков.

Однако не только такой щедрый химический состав делает цитоплазматическую мембрану особой структурой, все свои функции она выполняет благодаря строгой организации молекул.

Строение плазмалеммы физиологически идеально — двойной слой молекул жиров (липидов), полярно организованных, не дают своим выходить за пределы клетки, а чужим — проникать внутрь.

Организация плазмалеммы:

  • мембрана состоит из липидов молекулы, которые имеют особое строение,
  • каждый липид имеет два конца гидрофильная (любящая воду) головка и гидрофобный (боящийся воды) хвост,
  • липиды выстроены таким образом, чтобы головки были снаружи, а гидрофобные хвосты внутри,
  • поверхность мембраны гидрофильна (пропускает воду и, соответственно, растворы), а вот внутренняя часть, состоящая из гидрофобных окончаний, воду отталкивает,
  • в основном молекулы липидов содержат остатки фосфорной кислоты (это фосфолипиды), некоторые связаны с углеводами (гликолипиды) и холестеролом,
  • холестерол придает мембране упругость и жесткость,
  • благодаря электростатическим свойствам липиды притягивают молекулы белков, которые также входят в структуру цитолеммы.

Именно белковые молекулы (гранулы) заслуживают отдельного внимания ученых. Из-за своего различного положения и ориентации в полужидкой липидной среде они выполняют самые различные и очень важные функции.

Внутри и на поверхности цитолеммы встречаются следующие виды белков:

  1. Периферические. Эти молекулы расположены на поверхности и в основном выполняют защитную и стабилизирующую функции. Так, они выстраивают ферменты в конвейерные цепи и не позволяют ферментам просто перемещаться вдоль бислоя.
  2. Погруженные внутрь (полуинтегральные). Основная их функция — ферментативная, также они могут участвовать в транспорте веществ. Изучена и еще одна интересная роль этих белков — как переносчиков. Они легко соединяются с транспортируемыми молекулами и проводят их внутрь клетки.
  3. Пронизывающие (интегральные). Они располагаются таким образом, что проходят насквозь, через билипидный слой. Если несколько таких белков сливаются, то образуется канал (пора), через которую могут проходить определенные вещества, связываясь с белковыми молекулами.

Таким образом, все элементы мембранного бислоя несут строго ограниченные своей ролью и строением функции. Благодаря такой организации система работает слаженно и точно.

Отмечено, что плазмалеммы даже внутри одной клетки неоднородны. В них различается не только соотношение химических составных (белков, липидов, углеводов), но и вязкость внутреннего содержимого, ферментативная активность, плотность наружного слоя, толщина.

Месторасположение в клетке

Мембранные структуры буквально пронизывают клеточное содержимое. Они ограничивают все органоиды (за редким исключением, например рибосомы), выстилают их изнутри, являются оболочками ядер.

Самая массивная по содержанию плазмалеммы структура — эндоплазматическая сеть (ЭПР). Если сложить все мембраны, ее составляющие, то получится площадь более половины общей — на все клеточное пространство. По морфологии оболочка ЭПР сходна с внешней ядерной. Они составляют с ней единую систему и обеспечивают активный взаимный перенос элементов.

Комплекс Гольджи — еще один органоид, полностью выполненный из мембранных мешочков (цистерн). Также цитолеммы имеют митохондрии и пластиды.

Плазматическая мембрана — это часть плазмалеммы, находящаяся на границе клеточного содержимого. Она ограничивает протопласт от внешней среды, окружает клетку, защищая его от наружного воздействия.

Избирательная проницаемость[править]

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Строение клеточной мембраны

Клеточная мембрана содержит углеводы, которые покрывают ее, в виде гликокаликса. Это надмембранная структура, которая выполняет барьерную функцию. Белки, расположенные здесь, находятся в свободном состоянии. Несвязанные протеины участвуют в ферментативных реакциях, обеспечивая внеклеточное расщепление веществ.

Белки цитоплазматической мембраны представлены гликопротеинами. По химическому составу выделяют протеины, включенные в липидный слой полностью (на всем протяжении), – интегральные белки. Также периферические, не достигающие одной из поверхностей плазмолеммы.

Первые функционируют как рецепторы, связываясь с нейромедиаторами, гормонами и другими веществами. Вставочные белки необходимы для построения ионных каналов, через которые осуществляется транспорт ионов, гидрофильных субстратов. Вторые являются ферментами, катализирующими внутриклеточные реакции.

Типы органоидов

Определение

Участки цитоплазмы, отделенные от гиалоплазмы мембранами, которые могут располагаться одиночно или быть связанными друг с другом, именуются органоидами.

По наличию и количеству мембран они делятся на:

  • одномембранные;
  • двумембранные;
  • немембранные.

Как мембранные, так и немембранные органеллы, характеризуются определенным составом, имеют конкретные свойства и исполняют функции. Такие объемные зоны имеют иное название – компартменты. Их расположение внутри гиалоплазмы имеет определенные закономерности.

Комплекс Гольджи, лизомомы, пероксисомы, митохондрии, эндоплазматическая сеть – перечень органелл, отграниченных от гиалоплазмы мембраной, строение которой похоже на цитолеммы. Их жизнедеятельность связана с разделением либо слипанием (слиянием) мембран. Такие процессы характеризуются объединением исключительно идентичных слоев мембраны.

Пример

Наружный слой, расположенный на стыке с гиалоплазмой, идентичен цитолемме с внутренней стороны. Внутренний, граничащий с содержимым органеллы, аналогичен цитолемме с наружной стороны.

Преимущества использования супердиффузионных мембран

Хозяин частного дома, решивший использовать в конструкции кровельного пирога супердиффузионные мембраны, в сравнении с домовладельцами, использующими традиционные технологии, получит ряд неоспоримых преимуществ, среди которых основными можно назвать следующие:

  • Использование супердиффузионных мембран позволяет одной пленке заменить две, такие как гидро- и ветрозащита. Наличие мембраны допускает возведение конструкции без наличия вентиляционного зазора.
  • Укладка супердиффузионных мембран разрешается непосредственно на поверхность любого покрытия, что позволяет укладывать теплоизоляцию более толстым слоем, в сравнении с традиционными технологиями. Как результат, владелец дома получает усиленную теплоизоляцию. 
  • Использование супердиффузионных мембран позволяет продлить срок эксплуатации утепляющего материала и деревянных конструкций кровли. При этом, деревянные элементы крыши могут быть установлены без предварительной обработки специальными химическими составами. 
  • Применение супердиффузионных мембран в ходе создания кровельного пирога значительно сокращает время проведения монтажных работ и связанных с ними затрат. 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector