Лекция № 4. строение и функции нуклеиновых кислот атф

Определение ДНК

Дезоксирибонуклеиновая кислота, или ДНК, является биологическим макромолекула это несет наследственную информацию во многих организмах. ДНК необходима для производства белков, регуляции, обмена веществ и размножения клетка, Большие сжатые молекулы ДНК со связанными белками, называемыми хроматином, в основном присутствуют внутри ядра. Некоторые цитоплазматические органеллы, такие как митохондрии также содержат молекулы ДНК.

ДНК обычно представляет собой двухцепочечный полимер нуклеотидов, хотя одноцепочечная ДНК также известна. Нуклеотиды в ДНК – это молекулы, состоящие из дезоксирибоза сахар, фосфат и азотистая основа, Азотистые основания в ДНК бывают четырех типов – аденин, гуанин, тимин и цитозин. Фосфатные и дезоксирибозные сахара образуют структуру, напоминающую остов, с азотистыми основаниями, вытянутыми как ступеньки лестницы. Каждый сахар молекула через его третий и пятый атомы углерода связаны с одной молекулой фосфата каждая.

Индуцированная интеркаляцией сверхспирализация ДНК

Основываясь на свойствах интеркалирующих молекул, т. Е. Флуоресценции при связывании с ДНК и раскручивании пар оснований ДНК, недавно был введен метод одиночной молекулы для прямой визуализации отдельных плектонем вдоль суперспиральной ДНК, что в дальнейшем позволило бы изучить взаимодействия обработки ДНК. белки с суперспиральной ДНК. В этом исследовании Sytox Orange (интеркалирующий краситель) использовался для индукции суперспирализации на привязанных к поверхности молекулах ДНК.

С помощью этого анализа было обнаружено, что последовательность ДНК кодирует положение плектонемных суперспиралей. Кроме того, было обнаружено, что суперспирали ДНК обогащены в сайтах старта транскрипции у прокариот.

Приложения RCA


иллюстрация иммуно-RCA

RCA может усилить единичное событие молекулярного связывания более чем в тысячу раз, что делает его особенно полезным для обнаружения мишеней со сверхнизким содержанием. Реакции RCA могут проводиться не только в среде свободного раствора, но и на твердой поверхности, такой как стекло, микрошарики или наночастицы, микропланшеты, микрофлюидные устройства или даже бумажные полоски. Эта особенность делает его очень мощным инструментом для усиления сигналов в твердофазных иммуноанализах (например, ELISA ). Таким образом, RCA становится универсальным инструментом для усиления сигнала с широким спектром приложений в геномике, протеомике, диагностике и биодатчиках.

Иммуно-RCA

Immuno-RCA — это метод изотермического усиления сигнала для высокоспецифичного и высокочувствительного обнаружения и количественного определения белков. Этот метод объединяет два поля: RCA, который позволяет амплификацию нуклеотидов, и иммуноанализ, в котором используются антитела, специфичные к внутриклеточным или свободным биомаркерам. В результате иммуно-RCA дает специфический усиленный сигнал (высокое отношение сигнал / шум), что делает его пригодным для обнаружения, количественной оценки и визуализации белковых маркеров с низким содержанием в жидкофазных иммуноанализах и иммуногистохимии .

Иммуно-RCA следует типичной иммуноабсорбирующей реакции в ELISA или иммуногистохимическом окрашивании тканей. Детектирующие антитела, используемые в реакции иммуно-RCA, модифицируются путем присоединения олигонуклеотида оцДНК к концу тяжелых цепей. Таким образом, участок Fab (фрагмент, связывание антигена) детектирующего антитела все еще может связываться со специфическими антигенами, а олигонуклеотид может служить праймером для реакции RCA.

Типичная процедура иммуно-RCA, опосредованная антителами, выглядит следующим образом:

Иллюстрация иммуно-rca на основе аптамера

1. Детектирующее антитело распознает конкретную белковую мишень. Это антитело также прикреплено к олигонуклеотидному праймеру.

2. Когда присутствует кольцевая ДНК, она отжигается, и праймер совпадает с комплементарной последовательностью кольцевой ДНК.

3. Комплементарная последовательность кольцевой ДНК-матрицы копируется сотни раз и остается прикрепленной к антителу.

4. Выход RCA (удлиненная оцДНК) обнаруживается флуоресцентными зондами с использованием флуоресцентного микроскопа или считывающего устройства для микропланшетов.

Иммуно-RCA на основе аптамеров

В дополнение к опосредованной антителами иммуно-RCA праймер оцДНК RCA также может быть конъюгирован с 3′-концом ДНК-аптамера. Хвост праймера можно амплифицировать с помощью амплификации по катящемуся кругу. Продукт можно визуализировать по маркировке флуоресцентного репортера. Процесс показан на рисунке справа.

Другие приложения RCA

Различные производные RCA широко использовались в области биосенсинга. Например, RCA успешно использовался для обнаружения наличия вирусной и бактериальной ДНК в клинических образцах, что очень полезно для быстрой диагностики инфекционных заболеваний . Он также использовался в качестве метода усиления сигнала на чипе для анализа микрочипов нуклеиновых кислот (как для ДНК, так и для РНК) .

В дополнение к функции амплификации в приложениях биочувствительности, метод RCA также может применяться для создания наноструктур ДНК и гидрогелей ДНК . Продукты RCA также могут быть использованы в качестве темплатов для периодической сборки наноразмеров или белков, синтеза металлических нанопроволок и образования наноостровков .

Функции

Упаковка генома

Суперспирализация ДНК важна для упаковки ДНК во всех клетках. Поскольку длина ДНК может в тысячи раз превышать длину клетки, упаковка этого генетического материала в клетку или ядро ​​(у эукариот) является сложной задачей. Суперспирализация ДНК уменьшает пространство и позволяет упаковывать ДНК. У прокариот преобладают плектонемные суперспирали из-за круговой хромосомы и относительно небольшого количества генетического материала. У эукариот суперспирализация ДНК существует на многих уровнях как плектонемных, так и соленоидных суперспиралей, причем соленоидная суперспирализация оказывается наиболее эффективной для уплотнения ДНК. Соленоидная суперспирализация достигается с помощью гистонов с образованием волокна 10 нм. Это волокно затем свернуто в 30-нм волокно, а затем наматывается на себя еще много раз.

Упаковка ДНК значительно увеличивается во время митоза, когда дублированные сестринские ДНК разделяются на дочерние клетки. Было показано, что конденсин , большой белковый комплекс, который играет центральную роль в сборке митотических хромосом, индуцирует положительные суперспирали зависимым от гидролиза АТФ способом in vitro . Суперспирализация также может играть важную роль во время интерфазы в формировании и поддержании топологически ассоциирующих доменов (TAD).

Суперспирализация также необходима для синтеза ДНК / РНК. Поскольку ДНК должна быть размотана для действия ДНК / РНК- полимеразы , в результате будут возникать суперспирали. Область перед полимеразным комплексом будет размотана; это напряжение компенсируется положительными суперспиралями перед комплексом. За комплексом перематывается ДНК, и возникают компенсаторные отрицательные суперспирали. Топоизомеразы, такие как ДНК-гираза (топоизомераза типа II), играют роль в снятии некоторых стрессов во время синтеза ДНК / РНК.

Экспрессия гена

Специализированные белки могут распаковывать небольшие сегменты молекулы ДНК, когда она реплицируется или транскрибируется в РНК . Но работа, опубликованная в 2015 году, показывает, как ДНК открывается сама по себе.

Простое скручивание ДНК может обнажить внутренние основания снаружи без помощи каких-либо белков. Кроме того, сама транскрипция искажает ДНК в живых клетках человека, сжимая одни части спирали и ослабляя ее в других. Это напряжение вызывает изменения формы, в первую очередь раскрытие спирали для считывания. К сожалению, эти взаимодействия очень трудно изучать, потому что биологические молекулы легко изменяются. В 2008 году было отмечено, что транскрипция скручивает ДНК, оставляя за собой след из перескрученной (или отрицательно сверхспиральной) ДНК. Более того, они обнаружили, что сама последовательность ДНК влияет на то, как молекула реагирует на сверхспирализацию. Например, исследователи определили конкретную последовательность ДНК, которая регулирует скорость транскрипции; по мере того, как количество суперспиралей увеличивается и уменьшается, он замедляет или ускоряет скорость, с которой молекулярные механизмы считывают ДНК. Предполагается, что эти структурные изменения могут вызывать стресс в другом месте на своем протяжении, что, в свою очередь, может обеспечивать триггерные точки для репликации или экспрессии генов. Это означает, что это очень динамичный процесс, в котором и ДНК, и белки влияют друг на друга на то, как действует и реагирует другой.

Связь ДНК в передаче генов

Мы часто слышим обвинения в адрес генов, когда речь заходит о дурных склонностях и привычках человека. Попробуем разобраться, что такое гены и какую роль играет ДНК в передаче наследственных данных, переносит ли она негативную информацию. Каковы же функции нуклеиновых кислот в клетке?

Ген – это особый участок молекулы ДНК, образующийся из уникальных сочетаний нуклеотидов. Каждый тип гена находится в специально отведенном для этого участке спирали ДНК, никуда не мигрируя. Число нуклеотидов в генах постоянно. Например, ген, отвечающий за синтез инсулина, в своем составе имеет 60 пар нуклеотидов.

Также в цепочке ДНК находятся т.н. «некодирующие последовательности». Роль их в передаче генетического материала не до конца установлена. Предполагается, что эти последовательности отвечают за порядок в работе генов и «закручивают» хромосомы.

Весь объем генов в организме носит название геном. Он в свою очередь равномерно распределяется в 46 парах молекул ДНК. Каждая такая пара называется хромосома. Следовательно, организм человека состоит из 46 пар хромосом, в которые вложена вся генетическая информация, начиная от внешности, заканчивая предрасположенностью к различным заболеваниям.

Хромосомы различаются по своей морфологии и размеру. Основных форм две – Х и У. Человеческий организм содержит парные хромосомы, т.е. каждая хромосома имеет свою точную копию. Таким образом, в норме мы имеем 23 парные хромосомы. Каждая хромосомная пара выполняет свою функцию, отвечая за конкретные признаки. 22 пары хромосом отвечают за соматические признаки и лишь одна за половые. Сочетание хромосом ХХ означает, что на свет появится девочка, а сочетание ХУ – мальчик.

Что такое ДНК и РНК

Биологические науки, изучающие принципы хранения, реализации и передачи генетической информации, структуру и функции нерегулярных биополимеров относятся к молекулярной биологии.

Биополимеры, высокомолекулярные органические соединения, которые образовались из остатков нуклеотидов, являются нуклеиновыми кислотами. Они хранят информацию о живом организме, определяют его развитие, рост, наследственность. Эти кислоты участвуют в биосинтезе белка.

Различают два вида нуклеиновых кислот, содержащихся в природе:

  • ДНК — дезоксирибонуклеиновая;
  • РНК — рибонуклеиновая.

О том, что такое ДНК, миру было поведано в 1868 году, когда ее открыли в клеточных ядрах лейкоцитов и сперматозоидов лосося. Позже они были обнаружены во всех животных и растительных клетках, а также в бактериях, вирусах и грибах. В 1953 году Дж. Уотсон и Ф. Крик в результате рентгено-структурного анализа выстроили модель, состоящую из двух полимерных цепей, которые закручены спиралью одна вокруг другой. В 1962 году эти ученые были удостоены Нобелевской премии за свое открытие.

Уровни организации молекулы ДНК

Различают четыре уровня, определяющих строение и морфологию этой гигантской молекулы:

  • Первичный уровень, или структура – это порядок нуклеотидов в цепи.
  • Вторичная структура представляет собой знаменитую «двойную спираль». Устоялось именно это словосочетание, хотя на самом деле подобная структура напоминает винт.
  • Третичная структура образуется вследствие того, что между отдельными участками двухцепочечной закрученной нити ДНК возникают слабые водородные связи, придающие молекуле сложную пространственную конформацию.
  • Четвертичная структура – это уже сложный комплекс ДНК с некоторыми белками и РНК. В такой конфигурации ДНК упакована в хромосомы в ядре клетки.

Гены ДНК

Молекула несет в себе всю важную информацию о нуклеотидах, определяет расположение аминокислот в белках. ДНК человека и всех других организмов хранит сведения о его свойствах, передавая их потомкам.

Частью ее является ген — группа нуклеотидов, которая кодирует информацию о белке. Совокупность генов клетки образует ее генотип или геном.

Гены расположены на определенном участке ДНК. Они состоят из определенного числа нуклеотидов, которые расположены в последовательной комбинации. Имеется в виду то, что ген не может поменять свое место в молекуле, и он имеет совершенно конкретное число нуклеотидов. Их последовательность уникальна. Например, для получения адреналина используется один порядок, а для инсулина — другой.

Кроме генов, в ДНК располагаются некодирующие последовательности. Они регулируют работу генов, помогают хромосомам и отмечают начало и конец гена. Но сегодня остается неизвестной роль большинства из них.

Окончательная компактизация ДНК

В ядре форма макромолекулы дезоксирибонуклеиновой кислоты становится чрезвычайно сложной, компактизируясь в несколько этапов.

  1. Во-первых, нить сворачивается в особую структуру типа соленоида – хроматиновую фибриллу толщиной в 30 нм. На этом уровне ДНК, сворачиваясь, сокращает свою длину в 6-10 раз.
  2. Далее фибрилла при помощи специфических скэффолд-белков образует зигзагообразные петли, что уменьшает линейный размер ДНК уже в 20-30 раз.
  3. На следующем уровне формируются плотно упакованные петельные домены, чаще всего имеющие форму, условно названную «ламповая щетка». Они прикрепляются к внутриядерному белковому матриксу. Толщина таких структур составляет уже 700 нм, ДНК при этом укорачивается приблизительно в 200 раз.
  4. Последний уровень морфологической организации – хромосомный. Петельные домены уплотняются настолько, что достигается общее укорочение в 10 000 раз. Если длина растянутой молекулы – около 5 см, то после упаковки в хромосомы она уменьшается до 5 мкм.

Высшего уровня усложнения формы ДНК достигает в состоянии метафазы митоза. Именно тогда она приобретает характерный облик – две хроматиды, соединенные перетяжкой-центромерой, которая обеспечивает расхождение хроматид в процессе деления. Интерфазная ДНК организована до доменного уровня и распределяется в ядре клетки без особого порядка. Таким образом, мы видим, что морфология ДНК тесно связана с различными фазами ее существования и отражает особенности функционирования этой важнейшей для жизни молекулы.

Что такое ДНК?

ДНК расшифровывается как дезоксирибонуклеиновая кислота. Она представляет собой одну из трех макромолекул клетки (две другие – белки и рибонуклеиновая кислота). Кислота обеспечивает сохранение и передачу генетического кода развития и деятельности организмов. Простыми словами, ДНК – носитель генетической информации.

В ее составе содержится генотип индивида, который обладает способностью к самовоспроизводству и передает информацию по наследству.

Как химическое вещество кислота была выделена из клеток еще в 1860-х годах. Однако вплоть до середины XX столетия никто и не предполагал, что она способна хранить и передавать информацию.

Долгое время считалось, что эти функции выполняют белки, однако в 1953 году группа биологов сумела значительно расширить понимание сути молекулы и доказать первостепенную роль ДНК в сохранении и передаче генотипа. Находка стала открытием века, а ученые получили за свою работу Нобелевскую премию.

Структура ДНК

   В ДНК условно можно выделить первичную, вторичную и третичную структуры. Первичная структура ДНК – это количество, качество и порядок расположения остатков дезоксирибонуклеотидов в полинуклеотидных цепях. Вторичная структура ДНК — представляетсобой организацию полинуклеотидных цепей в молекуле ДНК. Молекула ДНК состоит из двух полинуклеотидных цепей, направленных противоположно друг другу и правозакрученых вокруг спиральной оси с образованием двойного типа спирали. Ее диаметр составляет 1,8-2,0 нм с периодом идентичности 3,4 нм.

  Углеводно-фосфатные группы в спирали расположены снаружи (сахарофосфатное основание), а азотистые основания — внутри. Азотистые основания двух цепей связываются между собой водородными связями по принципу комплементарности: аденин образует двойную связь с тимином, а гуанин в свою очередь — три связи с цитозином. Двойная спираль — характерное строение для большинства  ДНК-молекул. Одноцепную ДНК содержат некоторые вирусы, а также кольцевые формы ДНК — плазмиды.

    Третичная структура ДНК — это образование в пространстве спиралевидных и суперспиралевидных форм молекулы ДНК. Третичная структура ДНК (прокариот и эукариот) отличается некоторыми особенностями, которые связаны со строением и функцией клеток. Третичная структура ДНК эукариот образуется благодаря множественной суперспирализации молекулы и реализуется в виде комплексов ДНК с белками.

 ДНК эукариот практически полностью находится в хромосомах ядер, и лишь небольшое количество содержится в митохондриях (митохондриальная ДНК).

Строение и функции нуклеиновых кислот АТФ

Это самые длинные из известных макромолекул. Значительно меньше молекулярная масса РНК (от нескольких сотен до десятков тысяч).

ДНК содержатся в основном в ядрах клеток, РНК в рибосомах и протоплазме клеток.

При описании строения нуклеиновых кислот учитывают различные уровни организации макромолекул: первичную и вторичную структуру.

Первичная структура нуклеиновых кислот это нуклеотидный состав и определенная последовательность нуклеотидных звеньев в полимерной цепи.

Например:

…– А – Г – Ц –…

Под вторичной структурой нуклеиновых кислот понимают пространственно упорядоченные формы полинуклеотидных цепей.

Вторичная структура ДНК

Вторичная структура ДНК представляет собой две параллельные неразветвленные полинуклеотидные цепи, закрученные вокруг общей оси в двойную спираль.

Такая пространственная структура удерживается множеством водородных связей, образуемых азотистыми основаниями, направленными внутрь спирали.

Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum — дополнение).

Образование водородных связей между комплементарными парами оснований обусловлено их пространственным соответствием. Пиримидиновое основание комплементарно пуриновому основанию:

Водородные связи между другими парами оснований не позволяют им разместиться в структуре двойной спирали. Таким образом,

  • ТИМИН (Т) комплементарен АДЕНИНУ (А),
  • ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).

Комплементарность оснований определяет комплементарность цепей в молекулах ДНК.

Способность ДНК не только хранить, но и использовать генетическую информацию определяется следующими ее свойствами:

Вторичная структура РНК

В отличие от ДНК, молекулы РНК состоят из одной полинуклеотидной цепи и не имеют строго определенной пространственной формы (вторичная структура РНК зависит от их биологических функций).

Основная роль РНК непосредственное участие в биосинтезе белка. Известны три вида клеточных РНК, которые отличаются по местоположению в клетке, составу, размерам и свойствам, определяющим их специфическую роль в образовании белковых макромолекул:

  • информационные (матричные) РНК передают закодированную в ДНК информацию о структуре белка от ядра клетки к рибосомам, где и осуществляется синтез белка;
  • транспортные РНК собирают аминокислоты в цитоплазме клетки и переносят их в рибосому; молекулы РНК этого типа «узнают» по соответствующим участкам цепи информационной РНК, какие аминокислоты должны участвовать в синтезе белка;
  • рибосомные РНК обеспечивают синтез белка определенного строения, считывая информацию с информационной (матричной) РНК.

Любопытные факты

  • Единственный тип клеток, не содержащий ДНК, – это красные кровяные тельца.
  • Структура нуклеиновых кислот настолько похожа, что западные ученые выдвинули теорию: на ранних этапах эволюционной истории человечества ответственность за хранение информации, передаваемой по наследству, несла РНК.
  • Структурная формула молекулы ДНК была вычислена Д. Утсоном и Ф. Криком еще в 1953 году. И лишь спустя 9 лет эти ученые удостоились Нобелевской премии по медицине.
  • За различия между людьми отвечает менее 1% всех молекул ДНК, входящих в геном человека. Поэтому выражение «все мы из одного теста» имеет под собой научное обоснование.
  • Схожесть между ДНК человека и шимпанзе достигает 98%, а ДНК человека и свиньи совпадают на 96%.
  • Полная расшифровка генома человека была завершена в 2003 году.
  • Чтобы набрать на клавиатуре полный буквенный код генома человека, у вас уйдет 17 лет, с учетом того, что стучать по клавишам придется целыми сутками.
  • Геном человека составляет 100% генов, из которых 50% достаются от матери и 50% от отца.

Строение и функции нуклеиновых кислот, урок биологии

Чем отличаются ДНК и РНК

Рибонуклеиновая кислота

Рибонуклеиновая кислота (РНК) является одной из макромолекул, которая содержится в клетках каждого живого организма.  РНК представляет собой цепь, каждое из звеньев которой  называется нуклеотидом. Последовательность звеньев (нуклеотидов) кодирует генетическую информацию.

Транскрипция – это перенос информации из ДНК в РНК, который осуществляется посредством ферментов. Разные типы рибонуклеиновой кислоты обрабатываются разными ферментами. После завершения этого процесса, происходит модификация, которая подразумевает подготовку к следующему действию.

После происходит процесс названный трансляцией, цель которого – синтез белка с участием рибосом. Часть вирусов обладают геномами, состоящими из РНК – это говорит о том, что у них рибонуклеиновая кислота играет роль ДНК.

В 1868г. была открыта молекула РНК, а в 1939г. были определены ее основные функции.

Звенья РНК состоят из сахара и рибозы, но помимо этого, насчитывается еще около 100 модифицированных нуклеотидов, большинство из которых – модификации сахара. Значение и функции большей части соединений не известны, но ясно, что они располагаются в важных участках.

В составе РНК существуют азотистые основания, которые порой образовывают водородные связи или складываются в петлю. Различия между ДНК и РНК в структуре существуют – благодаря гидроксильной группе, молекула рибонуклеиновой кислоты существует в А-конформации.

Учеными-биологами выделяется три основных типа РНК:

  • Рибосомные РНК составляют большую часть, их главная цель – формирование центра рибосомы, где в дальнейшем происходит синтез белка;
  • Транспортные РНК присоединяют к себе аминокислоту и «довозят» ее до нужного места;
  • Информационные РНК передают информацию о белке рибосомам, где эти сведения будут реализованы.

Сходства между ДНК и РНК заключается в том, что обе молекулы могут хранить в себе информацию о процессах. РНК зачастую использует вместо генома вирусоподобные частицы и сами вирусы.

Таким образом, рибонуклеиновая кислота одновременно является носителем важной информации и катализатором реакций. Данные сведения подтолкнули ученых на мысль о том, что РНК самый первый сложный полимер, который появился в процессе эволюции

Данная гипотеза получила название – «РНК-мира».

А-ДНК – сухая молекула

А-форма – это правый винт с 11 комплементарными парами оснований в каждом витке. Диаметр его составляет 2,3 нм, а длина одного витка спирали – 2,5 нм. Плоскости, образуемые спаренными основаниями, имеют наклон 20° по отношению к оси молекулы. Соседние нуклеотиды расположены в цепочках компактно – между ними всего 0,23 нм.

Такая форма ДНК возникает при низкой гидратации и при повышенной ионной концентрации натрия и калия. Она характерна для процессов, в которых ДНК образует комплекс с РНК, поскольку последняя не способна принимать иные формы. Кроме того, А-форма весьма устойчива к ультрафиолетовому облучению. В этой конфигурации дезоксирибонуклеиновая кислота содержится в грибных спорах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector