Важнейшие липиды тканей человека. резервные липиды (жиры) и липиды мембран (сложные липиды). жирные кислоты липидов тканей человека

Классификация

Жиры являются сложными соединениями, которые могут встречаться в разных модификациях, они выполняют разные функции

Они представляют особую важность для клеток, принимают участие в многочисленных процессах человеческого организма. По этой причине классификация липидов достаточно обширная, она включает множество видов жиров, их основные признаки

Ниже в таблице имеется полная классификация жиров в зависимости от строения.

Описанные жиры относятся к омыляемым, во время их гидролиза получается мыло. Отдельно в группу неомыляемых жиров, а именно не вступающих в реакцию с водой, включают стероиды.

В зависимости от строения стероиды подразделяют на подгруппы:

  • Стерины. Это стероидные спирты. Они содержатся в составе животных и растительных тканей (холестерин, эргостерин).
  • Желчные кислоты. Производные холевой кислоты. Они содержат одну группу –СООН. Обеспечивают полноценное растворение холестерина и переваривание липидов. К этой группе можно отнести такие виды жирных кислот, как холевая, дезоксихолевая, литохолевая.
  • Стероидные гормоны. Обеспечивают усиленный рост и развитие организма. К этой группе относятся гормоны – кортизол, тестостерон, кальцитриол.

Существует большая группа – липопротеины. Это сложные соединения жиров и белков (аполипопротеинов). Липопротеины относятся к сложным белкам, но не к жирам.

В их составе имеются разнообразные сложные эфиры:

  • холестерины;
  • фосфолипиды;
  • нейтральные жиры;
  • жирные кислоты.

Выделяют две группы липопротеинов:

  • Растворимые. Содержатся в плазме крови, молоке, желтке.
  • Нерастворимые. Имеются в составе плазмалеммы, оболочки нервных волокон, хлоропластов.

Жиры в зависимости от физической структуры разделяют на твердые, жиры, масла. По нахождению в организме выделяют резервные (непостоянные, зависят от питания) и структурные (генетические обусловленные) жиры. В соответствии с происхождением бывают животными и растительными.

Гистохимические методы определения липопротеидов в тканях

Л. входят в состав клеточных мембран, мембран митохондрий, ядра, микро-сом, пластинчатого комплекса (аппарата Гольджи). Гистохим, методы определения Л. в тканях основаны на экстрагировании липидов из липидно-белкового комплекса Л., поэтому методы определения Л. идентичны методам определения липидов в тканях (см .Липиды). Однако в связи с гем, что липиды в Л. прочно связаны с белком, ткани нуждаются в предварительной обработке. Так, именно при окраске мазков крови на липиды было обнаружено, что при обработке мазков органическими к-тами (уксусной, лимонной, щавелевой, муравьиной) с последующим окрашиванием созревающим р-ром судана черного В в 70% спирте усиливается окраска митохондрий в лимфоцитах, начинают окрашиваться тромбоциты. Многие структуры, содержащие Л., начинают окрашиваться также после длительного промывания срезов или после сушки их в горячем воздухе, а также после нагревания до кипения в спиртовом р-ре судана черного В.

Число методов определения Л. в тканях (связанных липидов) очень невелико. Наиболее распространен метод Беренбаума с применением судана черного В, растворенного в ацетоне, при окрашивании к-рым связанные липиды хроматина, ядрышек, гранул нейтрофильных лейкоцитов приобретают черный цвет. Для научно-исследовательской работы при определении Л. в замороженных срезах рекомендуют бенз(а)пирен — кофеиновый метод Берга. Среди методов электронной гистохимии также существует очень небольшое число методов для определения Л. При этом часто приходится прибегать к параллельному исследованию с помощью световой микроскопии. При фиксации тканей для электронно-микроскопического исследования в р-ре четырехокись осмия — йодид цинка интенсивно контрастируются такие компоненты клетки, как пластинчатый комплекс, лизосомы, гранулярная эндоплазматическая сеть, митохондрии. Считают, что эту реакцию дают Л., входящие в состав мембран клеточных органелл.

ЛПНП (липопротеиды низкой плотности, бета-липопротеиды) — норма и отклонения

Биохимический анализ определения концентрации ЛПНП (липопротеидов низкой плотности, бета-липопротеидов) в крови — специфичный тест для оценивания риска патологических процессов в сердце и сосудах, назначения эффективного лечения этой проблемы.В кровяном русле человека циркулируют комплексы жиров и протеинов — липопротеиды, которые отличаются концентрацией в них жироподобного вещества, синтезированного печенью — холестерина. Различают:

  • очень низкую плотность липопротеидов;
  • альфа-липопротеиды (высокую плотность);
  • бета-липопротеиды (низкую плотность).

Липопротеиды низкой плотности состоят из белковой оболочки (апопротеина — 25%), жирных кислот (триглицеридов — 10%), других жиров (липидов — 10%), холестерина (55%). Именно поэтому ЛПНП называют «плохим холестерином» и считают главным фактором, провоцирующим атеросклероз — патологию, поражающую крупные сосуды в результате накопления холестерина и образования «жировых бляшек».Холестерин является незаменимым компонентом клеточной оболочки (мембраны) и участвует в синтезе гормонов стероидной группы, витамина Д и желчных кислот

В артериальную систему человеческого организма холестерин поступает с липопротеидами низкой плотности, это и объясняет высокий риск развития заболевания атеросклероза и нарушения кровоснабжения сердечной мышцы (коронарной болезни) при повышении уровня этих липопротеидов.Для классификации гипер-липопротеидемии и проведения эффективного лечения этой патологии важное значение отводится биохимическому исследованию концентрации бета-липопротеидов.

Показания для проведения биохимического анализа

Исследование уровня липопротеидов низкой плотности входит в состав липидной панели, в которую включены тестирование общего холестерина, альфа-липопротеидов и триглицеридов.Опытные терапевты и кардиологи назначают проведение биохимического анализа для оценивания риска развития атеросклероза и ишемии пациентам при:

  • повышенном артериальном давлении;
  • сахарном диабете;
  • заболеваниях печени;
  • избыточной массе тела;
  • злоупотреблении никотином и спиртными напитками;
  • низкой физической активности;
  • возрасте после 55 лет;
  • перенесенном инсульте или инфаркте.

Методика проведения исследования уровня ЛПНП

Биохимический анализ проводится из плазмы без фибриногена, забор крови производят в лечебном учреждении из вены.Пациентам необходимо:1. За день до отбора крови ограничить физические нагрузки.2. Ужинать до 19 часов, запрещено спиртное и жирная пища.3. Утром нельзя пить кофе, сок и курить.За день до отбора крови ограничить физические нагрузки.Для определения уровня бета-липопротеидов используют прямую ферментативно-колориметрическую методику, основанную на взаимодействии искомого вещества со специфическими реагентами. Количество фракции определяет фотоколориметр.

Интерпретация результата анализа

Концентрацию ЛПНП в крови различают по следующим степеням:

  • оптимальная: от 0,3 до 2,4 ммоль/л;
  • близкая к оптимальной: от 2,5 до 3,1 ммоль/л;
  • погранично высокой: от 3,2 до 3,9 ммоль/л;
  • высокой: от 4,0 до 4,8 ммоль/л;
  • очень высокой: более 4,8 ммоль/л.

Высокий уровень липопротеидов низкой плотности наблюдается при:

  • гипотиреозе;
  • почечной недостаточности;
  • сахарном диабете;
  • нервной анорексии;
  • беременности;
  • наследственной гипер-беталипопротеинемии;
  • порфириновой патологии;
  • дефекте иммунной системы — снижении уровня иммуноглобулинов.

Низкая концентрация бета-липопротеидов характерна для:

  • гипертиреоза;
  • стресса;
  • хронической анемии;
  • воспалительных заболеваний суставного аппарата;
  • хронических болезней легких;
  • тяжелых патологиях печени.

Повышению уровня ЛПНП способствует прием анаболических стероидов, кортикостероидов, андрогенов, а также длительное голодание и употребление продуктов, содержащих животные жиры.

Какую функцию не выполняют липиды

Липиды – органические вещества, имеющие сложное строение. Они образованы спиртами и жирными кислотами и являются гидрофобными соединениями без запаха и вкуса.

Жирные кислоты не имеют циклическую структуру взаимосвязей атомов углерода, относятся к карбоновым кислотам и содержат карбоксильную группу -СООН. В природе найдено более 200 видов жирных кислот. Однако в организме человека, в тканях растений и животных обнаружено только 70 видов.

Жирные кислоты подразделяются по наличию двойной связи на две группы:

  • ненасыщенные– содержат двойные связи;
  • насыщенные– не имеют двойных связей.

Рис. 1. Строение жирных кислот.

Жиры могут быть растительного или животного происхождения, твёрдые или в виде жидкостей – масел.

Значение

Липиды участвуют в метаболизме и постройке организма, дают энергию и регулируют рост. Список общих функций липидов и их описание представлены в таблице.

Функция

Описание

Триглицериды при полном расщеплении дают больше энергии, чем белки и углеводы. Из 1 г жира высвобождается 38,9 кДж энергии

Жиры способны накапливаться в организме, создавая энергетический резерв

Особенно это важно для животных, впадающих в спячку. Жиры расходуются медленно, особенно при пассивном образе жизни, что помогает пережить неблагоприятные условия

Кроме того, запасаются как резерв воды (горб верблюда, хвост тушканчика). При окислении 1 кг жира выделяется 1,1 л воды

Жировая прослойка защищает от механического повреждения внутренние органы

Жиры обладают низкой теплопроводностью, поэтому у многих животных, живущих в холодной среде, он откладывается в значительном количестве. Например, подкожный жир кита может достигать 1 метра

Кожа животных, в том числе человека, листья, плоды, стволы растений, перья птиц смазываются жиром (восками), чтобы отталкивать лишнюю влагу

Входят в состав гормонов, фитогормонов, жирорастворимых витаминов (D, Е, К, А), регулирующих деятельность организма. Гиббереллин – гормон роста растений. Тестостерон, эстроген – половые гормоны. Альдостерон регулирует водно-соляной баланс. Желчные липиды контролируют пищеварение

У человека и высших позвоночных животных жир накапливают специальные клетки – адипоциты, которые образуют жировую ткань.

Что мы узнали?

Из урока биологии узнали, какую функцию выполняют липиды в клеточной мембране и в организме в целом. Липиды – сложно устроенные вещества, состоящие из спиртов и жирных кислот.

Различные модификации жиров позволяют липидам участвовать в различной деятельности организма.

Липиды входят в состав гормонов, плазмалеммы, витаминов, способны накапливаться в жировых тканях и служить источником энергии, воды, защищать от повреждений и холода.

Липиды и их классификация

Липиды – это обширная группа жиров и жироподобных веществ, которые содержатся во всех живых клетках. Они неполярны и, следовательно, гидрофобны.

Липиды практически не растворимы в воде, но хорошо растворимы в органических растворителях, например в эфире, бензоле, хлороформе.

В некоторых клетках липидов очень мало, всего несколько процентов, а в некоторых их содержание достигает 90 % (семена подсолнечника, подкожная жировая клетчатка).

По химическому строению липиды разнообразны. Однако настоящие липиды – это сложные эфиры высших жирных кислот и какого-либо спирта.

Липиды подразделяются на простые и сложные.

Простые липиды

К простым липидам относятся триацилглицеролы (нейтральные жиры) и воска (см. Рис. 1).

1. Нейтральные жиры – это самые распространенные липиды, встречающиеся в природе. Их молекулы образуются в результате присоединения трех остатков высокомолекулярных жирных кислот к одной молекуле трехатомного спирта глицерина.

Липиды в составе диеты человека

Среди липидов в диетическом питании человека обычно используются триглицериды – нейтральные жиры. Они являются богатым источником энергии, а также они требуются для всасывания витаминов с жирорастворимой структурой.

Насыщенные кислоты имеются в составе следующей пищи:

  • различных видов мяса – говядины, свинины, баранины, птицы;
  • молочных продуктов;
  • некоторых тропических фруктов, а именно кокосов.

Ненасыщенные виды кислот могут попадать в организм человека при употреблении следующих видов продуктов:

  • орехов;
  • семечек подсолнечника;
  • оливкового и других растительных масел.

Главными источниками холестерола в рационе является мясо, внутренние органы животных, яичные желтки, молочные продукты, рыба.

Для справки! Организация American Heart Association советует потреблять липиды в количестве не больше 30% от общего рациона. При диете стоит уменьшить содержание насыщенных кислот до 10% от всех жиров. Не нужно принимать больше 300 мг холестерола в сутки (этот объем входит в состав одного яичного желтка).

Липиды – важные элементы, которые имеют огромное значение для природы и человека. Данные вещества обладают сложным составом, а их классификация объединяет множество групп и подгрупп, которые обладают разными свойствами и отличительными функциями.

Гистохимические методы определения в тканях

Самым старым методом окрашивания Л. в тканях является метод с использованием четырехокиси осмия (OsO4). Этот реактив восстанавливается непредельными жирными к-тами и целым рядом других веществ, обладающих восстанавливающими свойствами. Продукты восстановления OsO4 окрашены в черный цвет. Однако следует признать, что методы выявления Л. с помощью жирорастворимых красителей более просты и надежны. В гистохимии для этих целей прежде всего стали использовать судан III, несколько позже — судан IV и шарлах. Л. более интенсивно окрашиваются красящими смесями, особенно теми, которые содержат два (или более) гомолога или изомера нафтоловых суданов. Окрашивание Л. жирорастворимыми красителями основано на том, что они растворяются в жировых веществах лучше, чем в обычных растворителях. Термин «суданофилия» означает способность ткани окрашиваться любыми жирорастворимыми красителями.

Для сохранения Л. в тканях при фиксации рекомендуется использовать 10 — 15% р-р формалина, но еще лучше использовать фиксатор формол-кальций по Бейкеру: формалин— 10 мл; 10% хлористый кальций — 10 мл; дистиллированная вода — 80 мл.

К этому фиксатору должен быть добавлен мел, для того чтобы смесь имела нейтральную реакцию. Фиксировать ткань рекомендуется 24—48 час., более длительная фиксация может привести к образованию кристаллов, изменению растворимости Л. и т. д. Отмытая после фиксации ткань промывается в проточной воде; срезы готовятся на замораживающем микротоме. Ткань паренхиматозных органов можно предварительно заключить в желатину.

При окрашивании ткани на Л. дает хорошие результаты и одновременно выявляет суданофильную зернистость в сегментоядерных лейкоцитах метод Гольдмана. Р-р судана III для окраски тканей по этому методу готовится следующим образом: 70% этанол — 100 мл; дистиллированная вода —- 20 мл; альфа-нафтол — 1,2 г; судан III — в избытке.

Смесь кипятят в течение 10 мин. и фильтруют. Срезы ткани красят 15 мин., затем дифференцируют в 70% этаноле, контролируя процесс под микроскопом. Мазки крови фиксируют 3 мин. смесью, состоящей из 1 части формалина и 4 частей 96 % этанола.

При окраске тканей на Л. по методу Чаччо следует маленькие кусочки фиксировать в течение 24—48 час. в смеси следующего состава: 5% водный р-р двухромовокислого калия — 80 мл; формалин — 20 мл; ледяная уксусная к-та — 5 мл.

Затем кусочки ткани выдерживают 5 — 8 дней в 3% двухромовокислом калии («хромируют»), сутки промывают в проточной воде, проводят через этанол восходящих концентраций в течение суток, проводят через ксилол и заключают в парафин. Приготовленные срезы после обработки 70% этанолом красят насыщенным р-ром судана III в 70% этаноле или при температуре 50° красителем следующего состава: 80 % этанол — 95 мл; ацетон — 5 мл; судан III — до насыщения.

После охлаждения жидкость фильтруется. Срезы красят 30 — 60 мин. при температуре 30°, споласкивают 50% этанолом, промывают в дистиллированной воде и заключают в глицерин-желатину.

Ядра клеток можно красить на Л. квасцовым гематоксилином, лучше это делать до обработки срезов су-даном. Л. окрашиваются в оранжевокрасный цвет.

Библиография: Алимова Е. К., Аствацатурьян А. Т. и Жаров Л. В. Липиды и жирные кислоты в норме и при ряде патологических состояний, М., 1975; Биохимические методы исследования в клинике, под ред. А. А. Покровского, М., 1969; Кейтс М. Техника липидологии, пер. с англ., М., 1975; Комаров Ф. И., Коровкин Б. Ф. и Меньшиков В. В. Биохимические исследования в клинике, Л., 1976; Липиды, под ред. С. Е. Северина, М., 1977; Меркулов Г. А. Курс патологогистологической техники, с. 241, Л., 1969; П и р с Э. Гистохимия, пер., с англ., с, 259, М., 19 62; Lipids, ed. by R. Paoletti а. о., v. 1—2, N. Y., 1976; Masoro E. J. Physiological chemistry of lipids in mammals, Philadelphia, 1968; Searcy R. L. Lipopa-thies, Springfield, 1971.

Биохимические методы исследования

Биохим, определение Л. проводится гл. обр. в плазме или сыворотке крови, значительно реже в кале (с целью диагностики стеатореи) и моче (при липурии). Определение Л

в плазме крови особенно важно при заболеваниях, сопровождающихся повышением их концентрации в крови (гиперлипидемиях). К ним относятся некоторые заболевания печени (острые и хрон, гепатиты, цирроз и др.), липоидный нефроз (нефротическая гиперлипидемия), сахарный диабет, атеросклероз, панкреатиты, гипотиреоз

Широко применяется определение Л. (холестерина и триглицеридов) в крови при фенотипировании первичных и вторичных гиперлипопротеинемий с целью диагностики и рационального диетического и медикаментозного лечения. Снижение содержания Л. в крови (гиполипидемия) наблюдается реже — при длительном голодании или резко ограниченном потреблении жиров и при гипертиреозе.

При исследовании Л. в крови необходимо строго придерживаться следующих общих принципов: 1) взятие крови производится натощак спустя 10—12 час. после последнего приема пищи; 2) плазма (сыворотка) крови, используемая для анализа, не должна быть гемолизированной; 3) для экстрагирования Л. применяются органические растворители высокой степени очистки; 4) стандарты или референтные препараты Л. сопоставляют с международными стандартами и хранят в замороженном состоянии.

Существует несколько методов определения общих Л. в плазме (сыворотке) крови. Широкое применение нашли гравиметрические методы, основанные на экстрагировании Л. из плазмы крови смесью органических растворителей, с последующим их выпариванием и взвешиванием липидного остатка. Эти методы, однако, не отличаются высокой точностью.

Ряд методов основан на окислении общих Л. хромовой кислотой с последующим титриметрическим или колориметрическим количественным определением (см. Колориметрия, Титриметрический анализ). Широко применяется метод, основанный на цветной реакции, к-рую дают продукты распада Л. с сульфофосфованилиновым реактивом. Метод определения общих Л. в сыворотке крови с сульфофосфованилиновым реактивом принят у нас в стране в качестве унифицированного; содержание Л. в сыворотке крови здорового человека, определенное этим методом, в среднем составляет 350—800 мг%.

Концентрацию общих Л. в сыворотке крови определяют также методом Свана в модификации Л. К. Баумана (окрашенные судаковым черным Л. количественно извлекаются из сыворотки крови и определяются фотометрически) и турбидиметрическим методом (метод Хуэрго), в основу к-рого положено измерение оптической плотности жировой эмульсии, образуемой при взаимодействии серной к-ты с n-диоксановым экстрактом Л. сыворотки крови. Методом Хуэрго в сыворотке крови здорового человека определяется 500 — 700 мг% общих Л.

Для определения триглицеридов наиболее часто применяют методы, в основе которых лежит гидролитическое расщепление триглицеридов. Образовавшийся в результате гидролиза глицерин окисляют до формальдегида и последний определяют колориметрически. Наибольшей точностью из таких методов обладает метод Карлсона, часто применяемый в модификации Игнатовской (H. Ignatowsca).

Для определения холестерина используют методы, основанные на цветной реакции Либерманна— Бурхарда (см. Либерманна-Бурхарда реакция), причем наибольшей точностью из них обладает метод Абелля (см. Абелля метод). Кроме того, для определения холестерина и триглицеридов в крови начинают применять высокоспецифические энзиматические методы с использованием готовых наборов реактивов. Наконец, для определения этих Л. используют автоанализаторы — отечественный прибор АБМ-1, автоанализатор АА-2 фирмы «Техникой» и др. (см. Автоанализаторы).

Методы определения фосфолипидов основаны на экстрагировании или осаждении фосфолипидов из плазмы (сыворотки) крови, минерализации фосфолипидного фосфора, проведении цветной реакции на фосфор и колориметрическом измерении интенсивности окраски (см. Блура метод).

Для определения неэтерифицированных жирных к-т используют титриметрические и колориметрические методы. Из последних наиболее часто применяют методы, основанные на том, что жирные к-ты образуют с медью соли, которые в свою очередь образуют цветные комплексы с диэтил дитиокарбаматом натрия и другими соединениями.

Для разделения Л. используют методы тонкослойной хроматографии, часто с последующим анализом жирных к-т с помощью газожидкостной хроматографии (см. Хроматография).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector